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This paper describes several methods of visualizing the vector fields
in a flow analysis. A class of computational algorithms determining the
structure of vector fields are stated. These algorithms can be applied to
ather areas of computational physics. The first part of the paper con-
centrates on a formulation of the problem. Usually the objective vector
fields are obtained on a discretized space. This makes it difficult to
construct the computational algorithms. An appropriate interpolation
method has to be chosen in order to reconstruct a continuous space.
Since the reconstructed space is defined locally, a grid cell in which the
solution moves must be found by the efficient algorithm. This becomes
a crucial problem in three dimensions. The construction of schemes is
performed on both physical and computational spaces in order to
overcome such difficulty. < 1993 Academic Press, Inc.

INTRODUCTION

Various flow-visualization techniques have been
developed for analyzing experimental or computational
flow fields [1,27. Such techniques are divided into two
groups from the standpoint of analyzing the spatial flow
structure. One is the analysis of the scalar field, and the
other is that of the vector field. Hesselink [1] mainly
classified the flow-visualization techniques for scalar fields.
In the vector field, however, the classification of approaches
has not been yet settled. Two kinds of descriptions of the
vector field have been proposed. One is the direct represen-
tation of vectars, L.e., direction and magnitude of the vector
is presenied at a certain location. The other is the
Lagrangian or topological representation of the vector field;
oil flow pattern, streamlines, pathlines, streaklines, etc. In
most conventional methods, the particle tracing method has
often been utilized as a powerful approach in understanding
the complicated flow patterns. Several researchers have
investigated the algorithm of the particle tracing [2-8].
An early paper on the integration method for particle
tracing was published by Murman and Powell [57. Init, the
accuracy of the integration method was checked by using
the model velocity field. Smith er a/. {6] also examined the
accuracy of their algorithm by using another model field.
Many examples in flow simulations have been cited in other
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papers, but few statements about the gencral descriptions of
this problem (the formulation, the interpolation method,
the integration method, or the accuracy} can be found in
their papers.

The present paper addresses the above issues. First we
mention the formulation of the probiem (Section 1.1}). It is
assumed that the visualized results in the vector fields are
classified according to certain kinds of expressions for the
solution of the following ordinary differential equation:

LY

ds
In general, the vector b is defined in a discrete space,
and a continuous space should be rcconstructed by an
appropriate interpolation method. Thus, the subject of
this investigation is to analyze the solution of the above
cquation in a reconstructed vector feld, Occasionally,
the ordinary differential equation is transformed into the
curvilinear coordinates system in order to make it easier to
treal a discretized space (Sections 1.2 and 1.3.1). By using
the transformation idea, a particle tracing algorithm that is
suitable for large amounts of numerical data is introduced.
Next we pursue the characteristic feature of the equation by
integration numerically (Section 1.3) or expanding around
a critical point (Section 1.4). In Section 2, the accuracy
of our method is demonstrated by solving two model
problems. A practical application {visualization of flow past
a two-dimensional circular cylinder} and a Fortran code
used are cited in Appendix C.

I. COMPUTATIONAL APPROACH

1.1. Governing Equations

A vector {ield in steady or unsteady flows is described by
the following dynamical system:

x

—=h. 1

R (1)
where x defines a space in which the solution moves. The
system is autonontous if the vector field b is independent of

]
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time, and b is a function of variable x. The system is a non-
cutonomous system if the vector b is a function of variables
x and time. In the flow analysis, b is considered as the
velocity vector or the vorticity vector. The autonomous
system represents a steady flow field, and s is the distance
along the streamlines or the vortex lines. In the case of a
nonautonomous system, an unsteady flow field will be
required, and s denotes the time increment. Note that
the direct representation of vectors corresponds to the
interpretation of the tangent vector at a certain point in the
solution space.

In general, such ordinary differential equations cannot be
integrated analytically except when the components of
vector b exhibit special characteristics [9], because b is a
nonlinear function of the variable x and s. Assuming that a
certain particie in the flow field has no weight, the variable
x can be considered as the position of such an imaginary
particle. We term the variable x the particle position {or the
particle itself).

The ordinary differential equations are integrated in a
discrete space in accordance with the following process:

(a)
{b) Interpolating the vector b, ie., a reconstruction of
continuous space.

(cl)

(c2) Linearizing around the critical points (in Sec-
tion 1.4).

Determining the grid cell in which each particie lies.

Integrating the equation (in Section 1.3).

Usualily, the algorithms for these procedures are
developed in a physical space. In process {a), however, we
have great difficulty finding the correct grid cell, since the
grid cells are generally nonuniform. Especially in three-
dimensions, this difficulty is crucial if we treat a large num-
ber of particles. In our computations, we track hundreds
of thousands of particles in the grid system, which may have
millions of grid points. Therefore, we have to consider the
governing equation in a computational space. In next
section, we introduce several transformation relations
and show the formulation of the governing equation in the
computational space.

1.2. Transformation Relations

As a building block for subsequent calculations, we define
transformation relations from Cartesian coordinates to the
general curvilinear coordinates. The curvilinear coordinates
are indicated by E(&', &% %) The -relations between
Cartesian coordinates x{x!, x%, x*) and the curvilinear
coordinates are

x1(& &2 &%),
x*(&, & &),
x3 x3(él§ fl, CJ)

xl

il

x?

If

(2)

SB1{1G6/1-3

Three tangent vectors to three coordinate lines at a certain
point A, which coordinates are x,; (x4, x5, x3) in Cartesian
system and &,; (&1, &5, €3) in the curvilinear system are
represented by:

ax’y | .
r!(AO)=Z a_é; ]j (I’J:1$2,3)’ (3)
i
where i, is the base of Cartesian coordinates, ie.,

I
i;=(1,0,0),i,=(0,1,0), and i, = (0,0, 1}. A transforma-
tion matrix P is defined as

P, =ax'o¢. 4)

If the determinant of matrix P is not zero, the three tangent
vectors become linearly independent and make a natural
base at 4,. This base is denoted by e, and e,=1,. The
components of an arbitrary vector v at A, is expressed by
(v', v%, v*) in Cartesian system and (V' 3 V?) in the
curvilinear system; v can also be represented by using the
base in Cartesian coordinates,

v=uv'i, + 0%, + 071, (5a)
and in the curvilinear coordinates,
v="V'e + Ve, + Ve,. {5b}

Then we consider transformation relations of two bases.
Since the determinant of matrix P is not zero, the inverse
matrix P~ can be determined. The components of matrix
P lare

P,.}’ =0¢Hax. {6)

The relation between the two bases is obtained by using the
matrices £ and P~'. That is,

e,=Y P, (7a)
j

and

(7b)

Substituting for i, in Eq. (5a) from Eq. (7b), v becomes

V= (E vf'P;j‘) e; + (2 va;j‘> e, + (2 u-"P;_,.‘) e (%)

i ;
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Comparing Eq. (8) with Eq. (5b), the components of v in
the curvilinear coordinates are

V=3 v'P;t (9a)
J
Similarly, the following equation is obtained:
v =3 VP, {9b)
i

Finally, we define (wo base vectors (the covariant base
vectors a, and the contravariant base vectors a’) as

(al‘)j:(ei)_;=Pjis (10a)
(a’)y,=P;", {10b)

and
a,--aj=5j-", (10¢)

where (), denotes the component in the j-direction and 8/
is the Kronecker delta.

Then, we propose that Eq. (1) is transformed into the
general curvilinear coordinates and that the transformed
equation can be solved in order to overcome the difficulty in
process (a). Since the curvilinear system is defined as the
orthogonized and normalized coordinates system, it is casy
to find the grid cell in which each particle lies. If matrix P!
operates on Eq. (1) from the left-hand side, the equation is
transformed into the curvilinear coordinates:

d
d—i: , {lla)
dE =P~ dx, (11b)
B=P-1(b—‘%), (11c)

where in the case of autonomous system s is the distance
along the streamlines or the vortex lines in the curvilinear
coordinates, in the case of nonautonomous system, s’
denotes the time increment and x, is the grid position.

1.3. Trajectory Integration
1.3.1. Interpolation Methods

In solving the ordinary differential equation (1) or (11),
it should be considered how to determine an adequate
interpolation of the vector b, i.e., the reconstruction of the
continuous space. It is difficult to determine the best inter-
polation method because of two unsolved problems: (i} the
relation between the geometrical behavior of the numerical

solution and the discretization of the nonlinear partial dif-
ferential equations; and (ii) the connectivity of the local
solutions. Currently, it is popular to use the simple inter-
polation (linear or bilinear interpolation} with a sufficient
number of grid points, and we yield to this idea. In a future
paper, however, we will describe a more accurate algorithm
which depends on the flow solvers and will analyze the
numgerical error in the interpolating process.

In the actual computation, we have to decide on the algo-
rithm to solve Eq. (11). Then we show a specific algorithm
in three-dimensions. In the following explanation, (x, y, z)
represents (x', x*, x*) which appeared previously, (&, #, {)
stands for (&1, &2, £%), the component of b is (i, v, w) and B
18 (U, V, W). Also the superscript denotes the time step and
the subscripts (&, /, m) represents the index of the grid cell.
At first, the vector field is computed. Next the initial posi-
tion of the particles (x', y*®, z2®} is given in the physical
space (in Cartesian coordinates), and then the grid cells in
which each particle lies are found. In the last process, the
local transformation matrices are determined. Then, the
initial position in the curvilinear system is obtained by
Eq. (11b). In this stage, we face the great difficulty men-
tioned previously. An algorithm to find the grid cell in which
a particle lics should be considered. We solve this problem
by the geometrical interpretation of the two base vectors.
That is, we utilize Eq. (10c), and the covariant base vectors
are transformed to the unit vectors by operating on the
contravariant base vectors.

Let (X, ms Yie.tom> Zi,1.m ) denote a grid point aimed at test-
ing, and let a, and a’ be the covariant and the contravariant
base vectors at the grid point (k, /, m). A vector r is defined
as a test vector and has three components (x© —x; .,

O — ypms 29 =2z, ). If the position of particle (x‘*,
y'®, 2% is located in this grid cell indicated by (k, /, m), the
following three relations are satisfied:

1

AN

1!
1, (12a)
1.

r-a

2

PN
-

a3

r-a

0
0
0

-]
/AN AN Y

F/AN

The particle position in the grid cell 3§(dZ, n, () is

dE=r-a',
on=r-a’ (12b)
8=t a°

The geometrical interpretation in two-dimensions is shown
in Fig. 1. Strictly speaking, if the cell configuration is not a
parallelogram, there are some possibilities that the algo-
rithm may not find the correct position of the particle. We
can compute the correct position of the particle by means
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FIG. 1. Geometrical interpretation of relations among the test vector
r, the covariant base-vectors a; and the contravariant base-vectors a’in a
certain grid cell.

of the modified algorithm cited in Appendix A (see Fig. 2
also). However, the modified algorithm consumes much
computational time. In practical cases, the location of grid
points or the position on the coordinate lines is often chosen
as the initial value of (x‘*, y®, z°)), and then the initial
position in the curvilinear system is obtained immediately.
For convenience, the initial position is located at the grid
point X, ; ; (@, p®L L) = (£, 1, m®)). Then Eq. (11)
is integrated by using the adequate method with
B=B,0 ;0 0, and next the values (£, 5 ) are
obtained. The grid cell in which this particle lies is found as

k =int(e™),
I=int(n"),

m=int{{"),

(13a)

where int( /) indicates the integer which does not exceed f.
The particle position in the grid cell is

sE=¢ —k,
o=y~ 1, (13b)
SL={M—m,

.

FIG. 2,

{a) 2D grid cell subdivision; two-triangle subdivision. (b) 3D grid cell subdivision; six-tetrahedron subdivision.
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At the next time step, the contravariant vectors must be
interpolated. We use the bilinear isoparametric transforma-
tion as the interpolation method. The contravariant vector
B at point @ in Fig. 3 is obtained as foilows:

B, =By mll — &)1 —3n)+ By (1 6E(1 1)
+ By i 1m0 01
+ By iy 1 mll —68) 811(1—60)
+ [By s (1= 88)(1 —bn)
+ By 1 me 1 0E(1—dn)
+ B ime 080

+ B (1—88) dn] 60 (14)

Repeating these procedures, the solution of Eq. (11} for
(&9, 7', {19 is obtained in the curvilinear system. This
solution set [(&%, n'™, 1), (&9, p@, £?), ] is trans-
formed into the physical space. For example, the position of
the particle in the physical space is
Xo = EXpmll = ENL —00) + Xy 41 4 6E(1 — O)

T Xk i+ 1w O O

+ Xp 14 1ml(1 —68) on {1 - 8L)

+ (Xt 1 (1 —8E)L —dn)

+ xk+ 1.4m+1 55(1 - 5’1)

Xk y 04 Lms OC 0N

+ X p 1+ 1 {1 —6E) O] 6L

(15)

In this way, the trajectory of the particle is computed.

X
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1.3.2. Numerical Integration Methods

Since the interpolation methods depend largely on the
flow solvers as mentioned in the previous section, it is very
difficult to improve the accuracy of the numerical solution
for Eq. (1} or (11) by altering the spatial interpolation
methods. In order to obtain a more accurate numerical
solution for Eq. (1) or (11), the order of accuracy of the
integration method of the computation has to be estimated.
In this section, the accuracy of the integration methods is
discussed by using the model velocity field proposed in
Ref. [5]. It is expected that the process of coordinate trans-
formation makes it complicated to evaluate the accuracy.
Here we consider the accuracy of the numerical solution in
the physical space. The model set of equations is

(w)-50)-G 70

This set has the following analytical solution:

x(s)\ cos(fis) —sin(fs) \/x(0)
()= (Gt eoni)Gor) 07

For convenience, we consider that two parameters («, §) are
represented by using one parameter # as follows: & = cos(8);
B =sin(f). Here x(s+ ds} is approximated by expanding
around s up through the second order:

(16)

d 142
x(s+5s):x+d—:5s+—~§552+0(5s3).

2ds? - (18)

Substituting for dx/ds and d3x/ds’ in Eq.(18) from
Eq. (16), Eq. (18} is rewritten by

X(5+ds)=x+ Cxds+ iDx 652 (19)

I
“<

(k,l‘m)

e
- Qj
Sk
¢

FIG. 3. Relations between Cartesian coordinates and generalized curvilinear coordinates.
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\
\
C-X3s
X ds
y ________________
'
’ - ' Particle
’ A .
’, (AN Trajectory
’ - 1
/ -~ t \
Rt '
Rt D-xos |}
x

FIG. 4. Geometrical interpretation of matrices C and .

where

C‘(cos(ﬂ) —sin(#)
~ \sin(#) cos(()))

and

cos(20) —sin(20)
(sin(29) cos(29))'

s 5 is taken as time r, Cx is the velocity and Dx is the
acceleration.

Then we consider geometrical interpretation of matrices
C and D. From the second term in the right-hand side of
Eq. (19), matrix C rotates the vector x with angle #. Also,
matrix D rotates the vector x with angle 28, Figure 4 shows
the geometrical interpretation of operators C and D in the
case that 6 takes a value between 0° and 180°, If a first-
order-accurate method is used for the integration, the
following remarks are derived from the above considera-
tions:

‘)

=ae+fx+7ry

Fr.i

FIG. 5. Schematic of grid cell interpolated by using the linear function,

(i} il 0° <8<« 180° the numerical trajectory always
detaches from the exact trajectory to the outward direction
of the origin.

(i) if 180° < # < 360°, the numerical trajectory always
detaches from the exact trajectory to the inward direction of
the origin.

In this way, if the step size ds is not small, it is found
that the first-order-accurate method is not desired for the
trajectory integration. Therefore, in our computation, a
second-order-accurate predictor—corrector methed has
been utilized. Strictly speaking, this cannot be extended to
any interpolated vector fields as the general description even
if the vector field is represented by such a model equation.
However, if bilinear interpolation is used, the second-order-
accurate methods have good performance in integrating
Egs. (1) and (11) (see [5] and our results in this paper).

Also if linear interpolation is used, the first-order-
accurate methods should not be used for the integration in
the case of the model vector field; see appendix B (see Fig. 5
also).

1.4. Critical-Point Concepts

In previous sections, we have attempted to perform the
direct integration of Eq. (1) or (11). As mentioned in
Helman and Hesselink {15], the visualizations related to
the direct integration reflect the ones that most closely
resemble the pictures already familiar to those in the fluid
dynamics field, such as oil flow pattern, smoke visualiza-
tions, etc. Helman and Hesselink have investigated the vec-
tor ficld topology in fluid flow by using the critical-point
concept. However, in their paper [15], they have not clearly
shown the relation between the conventional approaches
and their critical-point concept. In this section, the global
characteristic of the solution will be examined by the
linearization of Eq. (1} or (11) around a critical point. Local
solutions to the Navier—Stokes equations have shown that
the critical points play an important role in the investigation
of vector fields [10-12]. The critical points are defined as
follows:

b 0

50 for

[# ], (20)

The classification of the critical point indicates the global
characteristic of the solution. In order to classify the critical
point, Eqs. (1) and (11) are expanded and linearized around
a certain point ¢. The linearized equations are

X Ex+b., 1)
ds
d
E_F B 22
X £+ B. (22)
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where E;=0b'/0x’ and F; = dB'/d¢’. If point c is a critical
point, the classification of the critical point is made by
enquiring into the eigenvalues and the eigenvectors of
matrices £ and F. Here we find the relation

F=pP 'EP. (23)

As this relation means the similarity transformation of
matrix E, the two matrices E and F have the same eigen-
values and eigenvectors. Therefore, we only investigate
either E or F. Then, we consider how the analysis of critical
points is valid in the study of the detailed structure of
the vector field. According to the theorem of Hartman-
Grobman [13], if the critical point is a hyperbolic point
(all eigenvalues have real parts unequal to zero), these
truncated systems (Egs. (21) and {(22)} are sufficient to
determine the local topology of the vector field [12]. The
detailed statements about the classification of the critical
points are described in Refs. [10-12]. Also Helman and
Hesselink have shown several examples of the critical points
in the computed vector fields [15]. In this paper, we intro-
duce the following three comments for the critical-point
concept in the computed vector fields.

First, there is the case where first-order interpolation is
selected for b and P~ In this case, the structure of the
vector field in the reconstructed space is fully described by
the critical-point concept (See Eqgs. (B3} and (BS) in
Appendix B).

The second case is about the model vector field in Sec-
tion 1.3.2. The eigenvalues at critical points in the vector
field, represented by the model equation, are the conjugate
complex. If >0, the solution has the unstable focus. If
o < 0, the solution is characterized by the stable focus. In the
case of & =0, the solution is represented by the circle. Since
these critical points play an important role in investigation
of the vortical flow, it is required in the particle tracing algo-
rithms that the model vector field should be precisely solved
by numerical experiments.

The third comment is about the property of critical points
in the case of two-dimensional incompressible velocity
fields. At a certain critical point (x_, y.), Eq. (21) becomes

du Ou

d(x—x( _ ax 5 x—X,
ds\y—y.) v ov y—x(.)'

ox oy

(24)

Neo Ve

The condition for incompressibility is

du 0
L

m o» 25
ax oy (25)

Let d denote {du/éx)(v/0y)— {dufdy)(dv/dx). The eigen-
values are as follows:

If 4 <0 then

A= —4, A= —/—d; {26a)
the critical point is the saddle.
If 4> 0 then
Lh=iJd, A= —iJd; (26b)

the critical point is the center.

Therefore, we should not have node and spiral points in the
velocity field. In the incompressible flow field, 4 is related to

the pressure field:
173 o°
d== —I;Jr——l—: .
2\dx*  dy

According to Eq. (26), the pressure value at the saddle point
is higher than the mean value surrounding the point, and
the value at the center is lower. These comments are useful
in verifying the numerical solution.

(26¢)

2. RESULTS FOR MODEL VECTOR FIELDS

We show the accuracy of our method by using the model
velocity fields in two dimensions. Two model fields are
tested. The first is the model vector field in Ref. [5]. The
other is the potential flow ficld around a circular cylinder
with a circulation. The velocity field is given by

4 r{y—c,
u=U,+ UOC:—“(—(x—Cx)2+ (.V_Cy)z)*ﬂ L rzc})’
(26)
4 I (x—c.r)

a
b= —ZUUF(X—CI) (J’—Cy)*-ﬁ—rz——,

where r= \/(x —¢. )+ (y—¢,)% U, is the uniform flow
velocity, I represents the circulation, a is the radius of the
cylinder, and (¢, ¢,) is the center of the cylinder. The first
case is referred to as Modell and the second case as
Model I1.

For these fields, Eq. (11) is solved in the discretized space.
Two kinds of discrete space are considered. One consists of
the grid points distributed randomly and is termed as RG
(in Fig. 6a). The other is the smoothed space, and is termed
as SG (in Fig. 6b). Figures 7a and 8a show the exact solu-
tions of Model I (6 =120°) and Model Il (U;=1.0, a=0.5,
¢,=¢,=00, and I'=6.0), respectively. In these figures, the
character p indicates the initial values of § in Eq. (11}, and
the thick lines represent the numerical solutions on RG after
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FIG. 7.
5G; 8y =0.125.

{(a) Exact solution for particle trajectories in Model I: 0 =120°
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. (b) Numerical integration on RG; §s = 0.125. {c) Numerical integration on



38 SUSUMU SHIRAYAMA

[S—

c

FIG. 8. (a)Exact solution for particle trajectories in Model 1I: Uy = 1.0,a=0.5, ¢, =¢,=0.0,and /"= 6. (b} Numerical integration on RG; ds =0.125.

(c) Numerical integration cn §G; 8s =0.125.

several time steps. The numerical resuits for each case are
demonstrated in Figs. 7b, ¢ and 8b, ¢. As seen in Figs. 7o
and 8b, even if trajectory integrations are performed with
the hardly distorted grid system, the qualitative feature can
be captured by means of the present algorithm. If we use the
smoothed grid system (in Figs. 7c and 8c), the results are in
fair agreements with the exact trajectories.

Our techniques have been applied to investigating many
flow fields [2]. An application and a Fortran code used in
a two-dimensional field are cited in Appendix C.

CONCLUSIONS

Several techniques of visualizing the vector fields in flow
analysis have been classified as enquiring into the solution

of the nonlinear autonomous or nonautonomous dynamical
system. Two methods are considered: the numerical integra-
tion and the linearization around the critical point.

For the implementation of computational algorithms,
two difficulties are encountered because the space is dis-
cretized by grid cells. The first difficulty is the interpolation
used to reconstruct the continuous space. The other is deter-
mining the grid cell in which the solution moves, It is found
that the coordinates transformation into the generalized
curvilinear system is useful to overcome second difficulty.
Qur results show that the simple interpolation is sufficient
to obtain the solution qualitatively. By means of the
transformation idea and the simple interpolation, a particle
tracing algorithm that is suitable for large amounts of
numerical data has been developed.

Additionally, we have investigated numerical integration
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methods. It is shown by the geometrical interpretation of
the coeflicients of the Taylor series expansion that the first-
order-accurate method always leads the erroneocus results
in vector fields reconstructed by the linear or bilinear
interpolation. It is suggested that more accurate methods
have to be used for numerical integration in any vector field.

Also the critical-point concept has been described. Three
comments mentioned in Section 1.4 are useful in verifying
numerical solutions.

APPENDIX A

At first, triangulation is performed as shown in Fig. 2.
The cell is divided into two triangles in two dimensions and
into six tetrahedrons in three dimensions. The test vector
and the contravariant base vectors are calculated at each
triangle or tetrahedron. Equation (12a) is modified as
follows: -

1
]

N (A1)

£}

=r-a
£r-a
0<r-a
g

r-al+r-a’+r-a‘<l

This algorithm can be appiied to the problem: “Does a
point lic inside a polygon?” [14].
APPENDIX B

The vector b is‘interpolated by using the linear function
as shown in Fig. 5. Equation (1) becomes

(rmo)_eop (170
ds\y— v, Y Xpy
C=(A;M Aﬁbj
A B AR
and

oy —4F
D=_ AI y { Y)’ (Bl)

!

Ja(_AI: ¥y A;'x
where 4} f means fk+l,l_fk,.'s A7 f means fk.1+1‘*fk,h
and J,=A} x- A y—A}f y A} x

In the case of the model vector field, substituting for &'
and #%in Eq. (B1) from Eq. (16}, Eq. (B1) becomes

200G 050
ds\y— Vi, B B« yiyk,n'..

Equation (B2) is same as Eq. (15). Therefore, in the linear

(B2)

interpolated field, comments about the model vector field
are rigorously satisfied.

In Eq.{B1), matrix D is equivalent to the transform
matrix P~ discretized to first order. Eq. (B1) becomes

du du
i(x—xk,,)= éx &y x—xk‘,) (B3)
ds\y— Vi, @ 5_” y=xe)

ax ay Xk b Vi,

We operate matrices D and D' on Eq. (B3) as

o
Di(x_xkv’)=D dx 5y D_lD(X—xk.I i
ds\y— v, @ 6_1) YT
ax 6}’ Xk by Yoo (B4)
We obtain
2 U
d (éékl) aé alf (é_ékl)
d e a ). (s
das’ \n—1y, (3_V @_V (R }
& /e m,

Thus, the method implemented in the computational space
has the same property with the method in the physical
space.

APPENDIX C

We simulate the flow past a circular cylinder in two
dimensions. The flow field is computed by solving the
incompressible Navier-Stokes equations. The velocity field
is visualized by solving Eq. (11) in two dimensions, where B
is set as the contravariant velocity. In a steady flow field, we
can obtain a streamline pattern. In an unsteady flow field,
we have two options to visualize this field. One is the instan-
taneous streamline. This pattern can be obtained by using a
frozen velocity field; that is, we use instantaneous values
of B. The other is the computed streakline.

To explain the computed streakline, consider the grid
system shown in Fig, 9a. The particles are released at every
time step from several points near the body surface. That
is, the initial value of Eq. (11} in two dimensions is
(£ 4 =(2,80),1=1,2,3,4,6,7,8, 9. Equation (11) is
solved at every time step for all particles. The pattern of
particles at +=50.0 is presented in Fig. 9b. This pattern
corresponds to the experimental streaklines and is called the
computed streakline. The Fortran program we used, which
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FIG. 9. ({(a) Grid system for the computation of flow past a two-dimensional circular cylinder. The number of grid points is 79 x 80. (b) Pattern of

particle traces (computed streaklines) at Re = 1000.

was included in the flow solver, is listed in the Algorithm
section of this paper. The arrays X, ¥ are the values of grid
points; the arrays ATl and AT2 denote a' and a°, respec-
tively; and the arrays U, V and UN, VN are the velocity
values at the current and new step. These arrays are set in
the flow solver. In the case that grid data and the time series
of velocity data are stored in a file, you can utilize this
program if you calculate the arrays AT1 and AT?2. First the

velocity field is transformed to the computational space in
Subroutine TRNSV. The new generated particles are
released in Subroutine GENEP. Then, new positions of the
particles are computed in Subroutine INTGP. The position
of particles in the computational space is stored in the
arrays PK and PL. Finally, the particle positions are
transformed to the physical space and are plotted on the
graphic dispiay in Subroutine PLOTP.



PROCESSING OF VECTOR FIELDS

ALGORITHM
C———— KMAX. LMAX are the number of grid points,
C-—--- DS is the time-iacrement.
C——~~— NP is the number of particles; NP=0 at first time Step.

SUBROUTINE PATHZD (KMAX, LMAX, DS, NP, X, ¥, AT1, AT2, U, ¥, UN, VN)
DIMENSION X (79, 80}, ¥ (79, 80), AT1(2, 78, B0), AT2 (2, 79, 80)
DIMENSION U(79, 80}, v (79, 80}, UN{79, 80), YN {79, 80)
DIMENSION PR ($0000), PL{10000), IPJUMP (10000)
CALL TRNSY (KMAX, LMAX, AT1, ATZ, UL V)
CALL TRNSV (KMAX, LMAX, AT1, AT2, UN, ¥N)
CALL GENEP (KMAX, LMAX, NP, PK, PL, IPJUMP)
CALL INTGP (KNAX, LMAX, NP, 0S, U, ¥, UN, ¥N, PE, PL, P JUNP)
DO 10 N=1, NP
IF (IPJUMP (N}, EQ. 0} CALL PLOTP{PX (N), PL{N), X, Y)
CONT INUE
RETURN
END

SUBROUTINE TRNSV (KMAX, LMAX, ATI, AT2, U, V}
DIMENSION AT1(2, 79, 80), AT2(2, 78, 80}, U (79, 80), V (79, B0)
00 10 L=t LMAX
DO 10 K=1, KMAX
UC=ATI (1, K, L) #U (K L} #AT1 (2, K, L)
O VC=AT2 {1, K L) #U (K L) +AT2{2, K, L)
UK, L) =Uc
V(K L)=vC
CONT INUE
RETURN
END

(K L)
#Y (K L)

SUBRQUTINE GENEP (KMAX. LMAX, NP, PK, PL, 1PJUMP)
DIMENS ION PK (10000}, PL (10000}, 1PJUMP (10008)
IF (NP, GT. 3992} RETURN
Do 10 =1, 9
IF (L. NE. 5} THEN
NP=NP+1
PK (NP) =2.
PL (NP)=8. #FLOAT (L)
IPJUMP (NP) =0
END IF
CONTINUE
RETURN
END

SUBROUTINE INTGP (KMAX, LMAX, NP, DS, UC, ¥C, UCN, VCN, PK, PL, |PJUMP)
DIMENSION UC (79, 80}, YC (79, 80}, UCN (79, 80), YCN (79, B}
DIMENSION PK (10000}, PL {10000), IPJUNP (10800)
D52=D5+. 5
DO 10 N=1, NP
IF (IPJUMP (N). EQ. D) THEN
PKW=PK (N)
PLW=PL {N)
CALL CALYP (PKW, PLW, UC. VC, PUW, PVW)
PK (N} =PK (N} +DS#PUW
PL (N) =PL (N +DS#PVW
CALL JOGEP (KMAX, LMAX, PKN}, PL{N}, LIDGE)
IF {1 JDGE, EQL 0) THEN
CALL CALYP (PK(N). PL (M), UCN, VCN, PU, PV)
PK (N) =PXW+D52# (PUW+PU)
PL (N) =PLWLDS 2% (PYW+PY)
CALL JDGEP (KMAX, LMAX, PK (N}, PL (N}, | JDGE)
END IF
1PJUMP (N) =1 JDGE
END IF
CONT I1NUE
RETURN
END

SUBROUTINE CALVP (POK, POL, UC, VC, PU, PV)
DEMENSION UC (79, 80), vC (79, B0)

K=INT (POK)

L=INT {POL)

DK=POK-FLOAT (K}
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DL=POL-FLOAT {L)

At=(1.-DK) # (1. -DL)

A2=DK# (1. -DL}

A3=DK#DL

Ad= (1. -DK) #DL

PU=AT#UC (K, L) +A2#UC (K+1, L) +A3RUC (K+1, L+1) +A4eUC (K, L+1)
PY=A14VC (K, L} +AZ8VC (K+1, L) +A3#VC (K+1, L+1) +A4#VC (K, LH1)
RETURN

END

SUBROUTINE JDGEP (KMAX, LMAX, POK, POL, | JDGE)
L=INT (POL)
JF{L. GE. LMAX=1} POL=POL-FLOAT (LMAX-2)
{F(L LT. 1) POL=POL+FLOAT (LMAX-2)

| JOGE=0

K=INT (POK)

KHAN= (K=1) % (KMAX—1-~K

IF (KHAN, LT, ) § JDGE=t

RETURN

END

SUBRQUTINE PLOTP (PQK, POL, X, ¥)

DIMENSION X (79, 80), Y (79, 80)

K=INT (POK)

L=INT (POL)

DK=POK-FLOAT (K)

DL=POL—FLOAT (L)

Al=(1.-0K) # (1. ~DL)

A2=DK# (1. -DL}

A3=DK#DL

Ad={1, -DK) «DL

GX=AT#X (K, L)Y +A28X (K+1, LY +A3%X (K+1, L+1) +A4#X (K, L41)
GY=A18Y (K, L) +AZHY (K+1, L} +A3#Y (K+1, L+1) tA4#Y (K, L+1}
CALL DRAW(GX, GY)

RETURN

END

REFERENCES

1. L. Hesselink, Anmu. Rev. Fluid Mech. 20, 421 (1988},

[

. 8. Shirayama and K. Kvwahara, Int. J. Supercomput. Appl. 4.2, 66
(1990}

. P. G, Buning and J. L. Steger, in Proceedings, AIAA 7th Computational
Fluid Dynamics Conference, Cincinnati, Ohio, June 1985, p. 162.

. 8. E. Rogers, P. G. Buning, and F. J. Merritt, faz. J. Supercomput. Appi.
1.4, 96 (1987).

5. E. M. Murman and K. G. Powell, 4144 J. 27, 982 (1988).
6. M. H. Smith, W. R. Van Dalsen, F. C. Dougherty, and P. G. Buning,

10.
11.
12.

13.

14.

ATAA Paper 89-0139, Jan. 1989.
. G. Yolpe, AIAA Paper 89-0140, Jan. 1989.

. R. Lohner, P. Parikh, and C. Gumbert, in Proceedings, 4/AA 9th
Computational Fluid Dynamics Conference, Buffalo, NY, June 1989,
p-495.

. T. Dombre, U, Frisch, J. M. Greene, M. Hénon, A. Mehr, and A. M.
Soward, J. Fluid Mech. 167, 353 (1986).

A. E. Perry and M. S. Chong, Annu. Rev. Fiuid Mech. 19, 125 (1987).
U. Dallmann, Fiuid Dyn. Res. 3, 183 (1988).

M, E. M. de Winkel and P. G. Bakker, Delft University of Technology
Report LR-541, March 1988.

). Guckerheimer and Ph. Holmes, Non-linear Osciliations, Dynamical
Systerns, and Bifurcations of Vector Fields (Springer-Verlag,
New York, 1983).

M. 8. Milgram, J. Comput. Phys. 84, 134 (1989).

. J. L. Helman and 1. Hesselink, FEEE Computer Graphics and
Applications, May 1991, p. 36.



